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Abstract—Real-time ride-sharing applications (e.g., Uber and Lyft) are very popular in recent years. Motivated by the ride-sharing

application, we propose a new type of query in road networks, called the optimal multi-meeting-point route (OMMPR) query. Given a

road networkG, a source node s, a target node t, and a set of query nodes U, the OMMPR query aims at finding the best route starting

from s and ending at t such that the weighted average cost between the cost of the route and the total cost of the shortest paths from

every query node to the route is minimized. We show that the problem of computing the OMMPR query is NP-hard. To answer the

OMMPR query efficiently, we propose two novel parameterized solutions based on dynamic programming (DP), with the number of

query nodes l (i.e., l ¼ jUj) as a parameter, which is typically very small in practice. The two proposed parameterized algorithms run in

Oð3l �mþ 2l � n � ðlþ log ðnÞÞÞ and Oð2l � ðmþ n � ðlþ log ðnÞÞÞÞ time, respectively, where n andm denote the number of nodes and

edges in graphG, thus they are tractable in practice. To reduce the search space of the DP-based algorithms, we propose two novel

optimized algorithms based on bidirectional DP and a carefully-designed lower bounding technique. We conduct extensive

experimental studies on four large real-world road networks, and the results demonstrate the efficiency of the proposed algorithms.

Index Terms—Multi-meeting-point query, ride-sharing application, dynamic programming, A* algorithm
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1 INTRODUCTION

REAL-TIME ride-sharing, also known as dynamic carpool-
ing, is a promising way to lower the fuel usage and mit-

igate traffic congestion in modern transportation systems.
Recently, many real-time ride-sharing applications, such as
Uber (www.uber.com) and Lyft (www.lyft.com), become
more and more popular for smart phone users to plan their
trips. In a typical real-time ride-sharing system, there are
two types of entities: the drivers and the passengers. The
passengers are capable of using their smart phones, which
are equipped with geo-locating devices, to book cars by pro-
viding their location information to the system, and then the
system dynamically arranges drivers to serve the passen-
gers with shared rides.

Building such a real-time ride-sharing system is a non-triv-
ial task. The main technical challenges come from two direc-
tions. First, how to rapidly find the driver to serve the
incoming passengers’ requests with shared rides. Second,
after matching the driver and passengers, how to quickly
determine the best route for the driver to pickup all the
matched passengers. In the literature, there are several studies
that aim to overcome the first challenge [1], [2], [3]. For exam-
ple, in [1], [2], Ma et al. proposed a system, called T-share, to
support real-time matching between drivers and passengers
for the Taxi ride-sharing application. In [3], Huang et al. pre-
sented an efficient kinetic tree algorithm to support real-time

driver-passengers matching with service guarantee. Both of
these work mainly focus on developing practical solutions to
match the drivers and passengers efficiently. In this paper, we
focus on overcoming the second challenge. We assume that
the driver-passengers matching procedure has been com-
pleted (e.g., one can use the method proposed in [3] for this
matching task), and our goal is to devise efficient algorithms
to identify the best route for the driver to serve the matched
passengers. To the best of our knowledge, this is the first
work that attempts to develop practical solutions to tackle the
second challenge in real-time ride-sharing applications.

Intuitively, the best route in our problem should consider
the costs taken by both the driver and passengers. The rea-
son is that if we only optimize the cost taken by the driver,
the best route could be a detour route, because the passen-
gers may be geographically dispersed and the driver has to
arrive at all such scattered sites to pickup passengers.
Clearly, a detour route is not economical, because the
detour route not only wastes passengers and drivers’ time,
but it also wastes vehicle fuel. For example, in Fig. 1, assume
that the source and target nodes are v1 and v10 respectively,
and there are two passengers who are located on nodes v4
and v6 respectively. When we only optimize the driver’s
cost, the best route is ðv1; v4; v3; v6; v8; v10Þ, the pickup points
are v4 and v6, and the total cost of this route is 9. Clearly,
such a route is a detour route between v1 and v10. However,
if the passengers at v4 and v6 can take a relatively small cost
to reach v1 and v3 respectively, then the best route becomes
ðv1; v3; v7; v10Þ, the pickup points are v1 and v3, and the total
cost taken by the driver and passengers is 7, which is
smaller than the previous route. According to this observa-
tion, we propose a flexible cost model to measure the best
route. In our cost model, we allow the passengers to take a
relatively small cost to arrive at the best pickup points (not
necessary the original locations of the passengers), and
we use a parameter a (a 2 ð0; 1Þ) to balance the tradeoff
between the costs taken by the driver and passengers. Based
on this cost model, we formulate the problem as a new route
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search query problem in a road network, called the optimal
multi-meeting-point route (OMMPR) query. The OMMPR
query is defined on a road network G, and the input of the
query contains four parameters, s, t, U , and a, where s and t
denote the source node and the target node respectively, U
denotes a set of query nodes (the locations of the passengers
in the road network G), and a 2 ð0; 1Þ is a weight parameter.
The OMMPR query returns a route P starting from s and
ending at t, such that the weighted average cost (weighted
by the parameter a) between the cost of the route P (the driv-
er’s cost) and the total cost of the shortest paths from every
node in U to the route P (the total cost of the passengers) is
minimized. Unlike many existing route search queries (e.g.,
shortest path query and its variants [4], [5], [6], [7]), the novel
feature of the OMMPR query is that the optimal route not
only considers the cost of the route, but it also takes the total
cost of the shortest paths from the query nodes to the route
into account. Moreover, the optimal route for the OMMPR
query problem does not necessarily pass through the query
nodes in U . The challenge of the problem is how to identify
the optimal route among all the s � t routes, the number of
which can be exponentially large. Indeed, we show that com-
puting the OMMPR query is NP-hard. To the best of our
knowledge, there is no previous work on route search that
can be adopted to answer theOMMPR query.

Due to the hardness of the problem, in this paper, we
strive to devise practical solutions to answer the OMMPR
query efficiently. Our main observation is that the number
of query nodes denoted by l, i.e., l ¼ jU j, is typically very
small in real-time ride-sharing applications (e.g., l � 7 for a
typical car), which enables us to design efficient parameter-
ized solutions for the OMMPR query. Specifically, we first
propose two novel parameterized algorithms based on
dynamic programming (DP), with the number of query
nodes l as a parameter. We refer to the two proposed
algorithms as Basic and Grow respectively. Basic and Grow

run in Oð3l �mþ 2l � n � ðlþ log ðnÞÞÞ and Oð2l � ðmþ n � ðl þ
log ðnÞÞÞÞ time respectively, where n and m are the number
of nodes and edges in graph G. Therefore, both Basic and
Grow are tractable when l is small. To further reduce the
search space of our algorithms, we propose two new opti-
mized algorithms, called Bidirect and Bidirect-Bounded,
based on bidirectional DP and a carefully-designed lower
bounding technique. We conduct extensive experiments on
four large real-world road networks. The results show that
when l is small (e.g., l ¼ 5), all the proposed algorithms can
answer the OMMPR query efficiently. The best algorithm
Bidirect-Bounded can answer the OMMPR query with
source-target distance no larger than 300km in sub-second
time in the whole USA road network, which consists of
23; 947; 347 nodes and 58; 333; 344 edges. This result indi-
cates that our Bidirect-Bounded algorithm can be used for
urban-scale real-time ride-sharing applications.

To summarize, ourmain contributions are threefold. First,
we present the first study for the OMMPR query motivated
by the real-time ride-sharing applications, andwe prove that
the problem of computing the OMMPR query is NP-hard.
Second, we propose two novel DP-based parameterized sol-
utions to answer the OMMPR query. We also devise two
novel optimized algorithms to further improve the efficiency
of the DP algorithms. The proposed solutions also demon-
strate that theOMMPR query problem belongs to the class of
fixed-parameter tractable algorithms [8], which is a particu-
lar complexity class and is tractable depending on somefixed
parameters. Third, comprehensive experimental studies are
conducted over four real-world datasets, and the results
demonstrate the efficiency of the proposed algorithms.

The rest of the paper is organized as follows. Section 2
defines the problem and reviews the existing work related
to ours. Section 3 introduces the proposed Basic and Grow
algorithm. In Section 4, we explains the details of the two
optimized algorithms Bidirect and Bidirect-Bounded. Sec-
tion 5 reports the experiments results, and Section 6 con-
cludes this work.

2 PROBLEM DEFINITION AND RELATED WORK

Below, we first formally define the OMMPR query problem
and discuss the hardness of the problem. Then, we review
the existing studies on the relevant problems.

Problem formulation. We model a road network as a
weighted graph G ¼ ðV;E;W Þ, where V , E, and W denote
the nodes set, the edges set, and the weights set respec-
tively. Let n ¼ jV j and m ¼ jEj be the number of nodes and
edges respectively. The weight wðvi; vjÞ of an edge ðvi; vjÞ
denotes the distance between vi and vj.

1 In this paper, we
consider G as an undirected graph. However, our major
techniques can also be extended to handle directed graphs.
Below, we use distance, cost, and weight interchangeably, if
the context is obvious.

Denote by Pst ¼ ðs; v1; . . . ; vk�1; tÞ an s � t route (or s � t
path). Let v0 ¼ s, vk ¼ t, and VPst be the set of nodes in Pst,
i.e., VPst ¼ fv0; v1; . . . ; vkg. We define cðPstÞ ¼

P
ðvi;viþ1Þ2Pst

wðvi; viþ1Þ as the total distance (or cost) between s and t
along the route Pst. Note that here the route Pst is not neces-
sarily a simple path. Let U � V be a set of nodes. For each
u 2 U , we define

dðu; VPstÞ ¼ min
vi2VPst

fdistðu; viÞg (1)

as the shortest-path distance from node u to the node set
VPst , where distðu; viÞ denotes the distance of the shortest
path from u to vi. Clearly, dðu; VPstÞ signifies the shortest-
path distance from node u to the route Pst. For convenience,
we refer to dðu; VPstÞ as a node-route distance. Suppose that
v is node in VPst and distðu; vÞ ¼ dðu; VPstÞ. Then, we refer to
v as the meeting point (pickup point) for node u and route
Pst, because it is the crossing node of the shortest path from
u to the route Pst. Note that here we only consider the meet-
ing point that is a node in the graph. Later, we will prove

Fig. 1. Running example (the number on each edge denotes the weight
of that edge).

1. Note that the weight of an edge can also denote the other quanti-
ties, such as travel time. Our proposed techniques are independent on
how the edge weight is assigned. In addition, we assume that all the
weights are nonnegative.
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that in our problem, the meeting point for a node u and the
optimal route Pst must be a node in VPst , i.e., the meeting
point cannot be located on any edge of the route Pst.

Let dðU; VPstÞ be the sum over all the node-route distances
from the nodes in U to the route Pst, i.e., dðU; VPstÞ ¼P

u2U dðu; VPstÞ. Given s, t, U , and a, we define the weighted

average cost function fðPstÞ for a route Pst as

fðPstÞ ¼ a� cðPstÞ þ ð1� aÞ � dðU; VPstÞ; (2)

where the parameter a 2 ð0; 1Þ balances the tradeoff
between the distance of the route Pst and the sum of all the
node-route distances from the nodes in U to the route Pst. In
this paper, we consider all nodes in U have the same weight
ð1� aÞ in the cost function, however, our major techniques
can also be extended to handle the situation when nodes in
U have different weights. Clearly, in real-time ride-sharing
applications, cðPstÞ models the cost taken by the driver,
while dðU; VPstÞ models the total cost taken by the passen-
gers. The OMMPR query aims at finding the route Pst from
a source s to a target t in a graph G such that fðPstÞ is mini-
mal. Formally, we define the OMMPR query as follows.

Definition 2.1. Given a road network G ¼ ðV;E;WÞ, the
OMMPR queryQ ¼ ðs; t; U;aÞ aims at finding the s � t route
Pst in G with minimum fðPstÞ, i.e.,

min fðPstÞ
s:t: Pst 2 Pst;

(3)

where Pst denotes the set of all s � t routes.

Example 2.2. Consider a graph shown in Fig. 1. Assume that
s ¼ v1, t ¼ v10, a ¼ 1=2 and U ¼ fv6g. Then, the optimal
route for the OMMPR query is the route Pst ¼
ðv1; v3; v7; v10Þ. The weighted average cost of the optimal
route P is 3, i.e., fðPstÞ ¼ 3. The meeting point for v6 and
route Pst is v3, because the path ðv6; v3Þ is the shortest
path from v6 to any node in VPst .

Remark 1. In real-world ride-sharing applications, the pas-
sengers may appear on the edges of the rode network G
(i.e., some query points in U may not be the nodes in G).
If that is the case, we can construct a new graph G0 in
which all query points in U are the nodes in G0. Specifi-
cally, for a query point u 2 U that is located on an edge
ðv;wÞ, we split ðv; wÞ into two edges which are ðv; uÞ and
ðu;wÞ respectively. After processing all points in U , we
obtain the new graph G0. Note that this procedure can be
done in OðjUjÞ time. For convenience, in this paper, we
ignore such a preprocessing step, and we assume that all
the query points in U appear on the nodes in G for the
OMMPR query.

Below, we prove that the meeting point for any node
u 2 U and the optimal route Pst must be a node in the graph.

Theorem 2.3. Given a road network G ¼ ðV;E;WÞ and a query
Q ¼ ðs; t; U;aÞ. The meeting point for every node u 2 U and
the optimal route Pst must be contained in V .

Proof. We prove the theorem by contradiction. For each
node u 2 U and the optimal s � t route Pst, we assume
without loss of generality that the meeting point of u and
Pst, denoted by x, is located on an edge ðr; vÞ as illus-
trated in Fig. 2a. Then, we have fðPstÞ ¼ aðcðPsrÞþ
cðPrtÞ þ 2wðr; xÞÞ þ ð1� aÞðdistðu; vÞ þ wðv; xÞÞ. To get a

contradiction, we construct two alterative routes P 1
st and

P 2
st which are illustrated in Figs. 2b and 2c respectively.

The meeting point for u and P 1
st is the node r, and the

meeting point for u and P 2
st is the node v. Then, we have

fðP 1
stÞ ¼ aðcðPsrÞ þ cðPrtÞÞ þ ð1� aÞðdistðu; vÞ þ wðv; rÞÞ,

and fðP 2
stÞ ¼ aðcðPsrÞ þ cðPrtÞ þ 2wðr; vÞÞ þ ð1� aÞðdistðu; vÞÞ.

We can derive that fðPstÞ � fðP 1
stÞ ¼ ð3a� 1Þwðr; xÞ and

fðPstÞ � fðP 2
stÞ ¼ ð1� 3aÞwðv; xÞ. Thus, we have fðPstÞ�

minffðP 1
stÞ; fðP 2

stÞg ¼ maxfð3a� 1Þwðr; xÞ; ð1� 3aÞwðv; xÞg 	 0.
This result indicates that we can always construct a route

(either P 1
st or P

2
st) that has no higher cost than that of the

route Pst, which contradicts to that Pst is the optimal
route. This completes the proof. tu
Based on Theorem 2.3, we only need to consider the

nodes in the graph to compute the OMMPR query. Below,
we show the hardness of computing the OMMPR query.

Hardness. Intuitively, directly searching for the optimal
route for theOMMPR query is impractical, because the num-
ber of s � t routes is exponentially large. We show that com-
puting the optimal route for theOMMPR query is NP-hard.

Theorem 2.4. The problem of computing the OMMPR query is
NP-hard.

Proof. We show a reduction from the s � t path Traveling
Salesman Problem (TSP), which is known to be NP-hard
[9], [10]. Given a complete graph G ¼ ðV;E;WÞwith met-
ric edge costW : E ! Rþ, a source node s, a target node t,
and a set of nodesU ¼ V nfs; tg, the s � t path TSP aims to
find the shortest path that starts from s, ends at t, and
passes through all the nodes in U [9]. It should be noted
that the optimal path of the s � t path TSP must visit all
the nodes in U exactly once. Below, we show that given

any s � t path TSP query ~Q ¼ ðs; t; UÞ, it is equivalent to
the OMMPR query Q ¼ ðs; t; U;a ¼ 1=3Þ. Specifically, for
any s � t route Pst and a node u 2 U , we assume that
distðu; vÞ is the shortest-path distance from node u to the

route Pst as illustrated in Fig. 3a. Let ~PstðuÞ be the route
ðs � v � u � v � tÞ as illustrated in Fig. 3b. Note that
~PstðuÞ is a s � t route that passes through u. Clearly, the

cost of the route ~PstðuÞ equals cðPstÞ þ 2� distðu; vÞ.
Recall that given a ¼ 1=3, the weighed average cost

regarding to Pst and u, denoted by fðPst; uÞ, is 1
3 cðPstÞ þ

Fig. 2. Illustration of Theorem 2.3. Fig. 3. Illustration of two equivalent routes when a ¼ 1=3.
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2
3 distðu; vÞ (see Eq. (2)). Obviously, when a ¼ 1=3, the cost

of the route ~PstðuÞ is three times fðPst; uÞ. Moreover, it is
easy to verify that this result also holds for any s � t route
Pst and all the nodes u 2 U . That is to say, the cost of any
s � t route that passes through all the nodes inU , denoted

by ~PstðUÞ, is three times fðPst; UÞ, where fðPst; UÞ is the
weighed average cost regarding to Pst and U given that

a ¼ 1=3. Since the s � t path TSP query ~Q aims at finding

the s � t route ~PstðUÞwith minimum cost, it is equivalent
to minimize fðPst; UÞ (a ¼ 1=3) over all s � t routes,
which is exactly the goal of the OMMPR query
Q ¼ ðs; t; U;a ¼ 1=3Þ. tu
Related work. The OMMPR query is closely related to the

optimal sequenced route (OSR) query in road networks
which is independently proposed in [11] and [12], and gen-
eralized in [13], [14], [15]. As defined in [12], the OSR query
aims to find a route of minimum distance starting from a
source node and passing through several typed nodes in a
specific sequence imposed on the types of the nodes, and
then ending at a target node. The OSR query is different
from the OMMPR query in three aspects. First, in OMMPR
query, the nodes are without any type information. Second,
unlike the OSR query, the OMMPR query does not impose
a type-sequence constraint on the optimal route. Third, for
the OSR query, the optimal route must pass through the
specific typed nodes, whereas for the OMMPR query, the
optimal route does not necessarily pass through the specific
nodes. For example, reconsider the graph shown in Fig. 1.
Assume that the source and target nodes are v1 and v10
respectively, a ¼ 1=2, and the specific node is v6 (i.e.,
U ¼ fv6g). Then, the answer for the OSR query is the route
ðv1; v3; v6; v8; v10Þ, whereas the optimal route for the
OMMPR query is the route ðv1; v3; v7; v10Þ. Due to such dra-
matic differences, the previous techniques for the OSR
query [11], [12], [16] cannot be used for the OMMPR query.
Another related but different problem is the keyword-aware
optimal route (KOR) search problem proposed in [17]. The
KOR query aims at finding the best s � t route such that the
route passes through the nodes that covers all the given key-
words, and it simultaneously satisfies some pre-defined
constraints [17]. Clearly, by definition, the OMMPR query is
fundamentally different from the KOR query, thus the tech-
niques proposed in [17] cannot be applied to our problem.

Our work is also closely related to the so-called ride-shar-
ing query problem studied in [18], [19]. The goal of the ride-
sharing query in [18], [19] is to find the optimal s � t detour
route that includes a sub-route s0 � t0 where s0 and t0 are
specified in the query. Clearly, the optimal s � t detour
route for the ride-sharing query passes through the given
nodes s0 and t0, whereas the answer for our problem does
not necessarily pass through the query nodes. Owing to this
fundamental difference, the techniques established in [18],
[19] cannot be used for our problem.

Another related problem is the optimal meeting point
(OMP) query problem in road networks [20], [21], where the
query is a set of nodes and the goal is to find a gathering
point such that the total cost of all the query nodes reaching
the gathering point is minimized. The OMP query is also
fundamentally different from our OMMPR query. On the
one hand, the OMP query aims to find a gathering point,

whereas the OMMPR query aims to find an s � t route. On
the other hand, in our problem, the objective cost function
includes two parts which are the distance of the route and
the total cost of all the node-route distances, whereas in
OMP query, the cost function only depends on the distances
of the query nodes to the gathering node. Due to these dif-
ferences, the existing solutions for the OMP query cannot be
used for the OMMPR query. Moreover, the authors in [21]
also show that the gathering point of the OMP query must
be a node in the road network by using a proof that is differ-
ent from ours. In addition, it is worth mentioning that the
shortest path between the source and the target is clearly
not the optimal route for the OMMPR query, thus the Dijk-
stra algorithm [22] as well as many previous index-based
solutions [4], [5], [6], [7] for the shortest path query cannot
be applied to our problem.

3 OPTIMAL SOLUTION BY DP

As shown in the previous section, the OMMPR query prob-
lem is NP-hard, thus it is impossible to devise a polynomial-
time algorithm to solve it unless P=NP. In this section, we
propose several novel fixed-parameter tractable [8] algo-
rithms to solve our problem based on the technique of
dynamic programming. Let l be the number of elements in
U . We show that the time complexity of the proposed fixed-
parameter tractable algorithms is OðfðlÞgðm;nÞÞ, where fðlÞ
is an exponential function of l (e.g., fðlÞ ¼ 2l or fðlÞ ¼ 3l) and
gðm;nÞ is a near-linear functionwith respect to the graph size
(e.g., gðm;nÞ ¼ mþ nðlþ lognÞ). As a result, when the
parameter l is small, our algorithm is very efficient and it can
be scalable to handle very large graphs. It is important to
note that for theOMMPR query problem, the size of the road
network may be very large, whereas the number of elements
in U is generally very small (e.g., l ¼ jU j � 7). Thus, our
fixed-parameter tractable algorithms are very efficient in
practice, which is also confirmed in our experiments.

3.1 The Basic DP Algorithm

We propose a basic dynamic programming algorithm in
which a state is represented by ðu;XÞ, where u is the end-
node of a route and X is a subset of U . The DP algorithm
finds the optimal route by expanding the end-node of a
route and the subset X until the end-node reaches t
and X ¼ U . Let fðu;XÞ be the weighted average cost of
the optimal multi-meeting point route Psu starting from
s and ending at u, with a query node set X, i.e.,
fðu;XÞ ¼ a� cðPsuÞ þ ð1� aÞ � dðX; VPsuÞ. Then, we define
fðu;X1; X �X1Þ as the optimal weighted average cost of an
s � u route Psu such that all the meeting points for the nodes
in X1 and the route Psu are located in VPsu � fug and all the
meeting points for the nodes in X �X1 and the route Psu

coincide with u, where ‘�’ denotes the set difference
operator. Fig. 4 illustrates the definition of fðu;X1; X �X1Þ.

Fig. 4. Illustration of the definition of fðu;X1; X �X1Þ, where s � v is the
optimal route starting from s and ending at v, regarding to the setX1.
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Formally, fðu;X1; X �X1Þ can be computed by the follow-
ing equation

fðu;X1; X �X1Þ ¼ min
ðv;uÞ2E

ffðv;X1Þ þ a� wðv; uÞ

þð1� aÞ �
X

x2X�X1

distðx; uÞg: (4)

We explain Eq. (4) as follows. For the partition ðX1; X �X1Þ
of X, the optimal s � u route can be obtained by expanding
an edge ðv; uÞ from the optimal sub-route s � v and then
taking the minimum cost over all ðv; uÞ 2 E (Fig. 4). Based
on fðu;X1; X �X1Þ, the weighted average cost of OMMPR
starting from s and ending at u, regarding toX, is given by

fðu;XÞ ¼ min
X1�X

ffðu;X1; X �X1Þg: (5)

For convenience, in the rest of the paper, we use the cost of
the OMMPR to denote its weighted average cost when the
context is obvious. In Eq. (5), the cost of OMMPR is obtained
by taking the minimum cost over all the partitions ofX.

We set the initial state of ðu;XÞ as ðs0; ;Þ, where s0 is a
dummy node which links the source node s with a zero-
weight edge ðs0; sÞ. For the initial state ðs0; ;Þ, we have
fðs0; ;Þ ¼ 0. To answer the OMMPR query, we can calculate
fðt; UÞ based on Eqs. (4) and (5) using dynamic program-
ming with initial state ðs0; ;Þ.

Algorithm 1. BasicðG;U; s; tÞ
Input: G ¼ ðV;E;WÞ, node set U , a, source node s, and target

node t.
Output: the minimum cost.
1: Q  ;; D  ;;
2: Add a dummynode s0 and an edge ðs0; sÞwithweight 0 intoG.
3: Q:pushððs0; ;Þ; 0Þ;
4: whileQ 6¼ ; do
5: ððv;XÞ; costÞ  Q:popðÞ;
6: if v ¼ t andX ¼ U then return cost;
7: D  D [ fðv;XÞg;
8: for all ðv; uÞ 2 E do
9: for allX0 � U �X do
10: cost0  costþ a� wðv; uÞ þ ð1� aÞ �P

x2X0 distðx; uÞ;
11: updateðQ;D; ðu;X [X0Þ; cost0Þ;
12: return þ1;
13: Procedure updateðQ;D; ðv;XÞ; costÞ
14: if ðv;XÞ 2 D then return;
15: if ðv;XÞ =2 Q thenQ:pushððv;XÞ; costÞ;
16: if cost < Q:costððv;XÞÞ then Q:updateððv;XÞ; costÞ;

The basic algorithm. We present a Dynamic Programming
algorithm based on the best-first strategy [22] to compute the
OMMPR query. We refer to this DP algorithm as Basic, and
outline it in Algorithm 1. Specifically, in Algorithm 1, we
define ðv;XÞ as a state, and represent it as a tuple
ððv;XÞ; costÞ, where cost ¼ fðv;XÞ denotes the cost of the
OMMPR starting from s and ending at v, with query node set
X. Algorithm 1 maintains a priority queue Q, and each ele-
ment of Q is a tuple ððv;XÞ; costÞ. In Q, the priority of each
element ððv;XÞ; costÞ is cost, and the minimum cost element
is maintained as the top element ofQ. The queueQ has three
operators which are pop, push, and update. The pop operator
dequeues the element with minimum cost from the queue.

The push operator inserts an element into the queue. The
update operator updates the cost (i.e., priority) of an element
in the queue, and then maintains the priority queue. In addi-
tion, Basic also maintains a set D to record all the tuples
ððv;XÞ; costÞ such that the optimal route starting from s and
ending at v, with query node setX, has been calculated.

The algorithmfirst initializesQ andD to be ; (line 1). Then,
Basic adds a dummy node s0 and an edge ðs0; sÞwithweight 0
into the graph G, and then inserts the tuple ððs0; ;Þ; 0Þ into Q
(lines 2-3). While Q is not empty, Basic repeatedly pops the
top element ððv;XÞ; costÞ fromQ based on the best-first strat-
egy, and then expands the end-node of the current route and
the set X until it finds the optimal s � t route (lines 4-11).
Note that in each expansion (lines 8-11), Basic updates the
cost of the expanded state ðu;X [X0Þ by invoking the proce-
dure update (lines 13-16). In line 16, Q:costððv;XÞÞ gets the
cost of the element ððv;XÞ; costÞ, and Q:updateððv; setÞ; costÞ
updates the cost of the state ðv;XÞ. In line 6, when the top ele-
ment of Q is ðt; UÞ, the algorithm terminates, because ðt; UÞ
cannot be expanded, and the cost of ðt; UÞ is minimum in the
queue, thus it is the optimal cost for theOMMPR query. Theo-
rem 3.1 shows the correctness of Algorithm 1.

Theorem 3.1. Algorithm 1 correctly computes the optimal cost
for the OMMPR query.

Proof. The proof can be obtained by the induction on jXj.
We omit the details due to space limit. tu
The following example illustrates howAlgorithm 1works.

Example 3.2. Consider a graph shown in Fig. 1. Suppose
that s ¼ v1, t ¼ v10, U ¼ fv6g, and a ¼ 1=2. First, by
lines 2-3, the element ððs0; ;Þ; 0Þ is pushed into the priority
queue Q. Then, in the first iteration, the element
ððs0; ;Þ; 0Þ is popped from the queue (line 5), as it has min-
imum cost. Subsequently, the algorithm expands the
state ðs0; ;Þ in lines 8-11. After that, the algorithm gener-
ates two states which are ððv1; ;Þ; 0Þ and ððv1; fv6gÞ; 3=2Þ,
and pushes these states into Q. In the second iteration,
the algorithm pops the element ððv1; ;Þ; 0Þ and expands
the state ðv1; ;Þ in a similar way. When the algorithm
pops the state ðv10; fv6gÞ, the algorithm terminates. We
can get that the optimal cost of the state ðv10; fv6gÞ is 3,
and the optimal route is ðv1; v3; v7; v10Þ.
Discussion. Note that Algorithm 1 can be straightfor-

wardly extended to find the optimal route. Specifically, we
can maintain an array to record the previous state for each
state ðv;XÞ when the cost of ðv;XÞ is updated. Then, we can
use this array to reversely output the optimal route. The
same technique can be applied to all the algorithms pro-
posed in this paper to output the optimal route. Therefore,
in the rest of the paper, we only outline the algorithms to
compute the optimal cost, and omit the details for finding
the optimal routes. In addition, it is also very easy to deter-
mine all the meeting points based on all the recorded states
in the optimal route, thus we omit the details for brevity.

Cost analysis. We analyze the time and space complexity
of Algorithm 1 in the following theorem.

Theorem 3.3. Algorithm 1 computes the OMMPR query using

Oð3l �mþ 2l � n � ðlþ log ðnÞÞÞ time and Oð2lnþmÞ space,
where l is the number of elements in U .
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Proof. First, there are n nodes and 2l subsets of U , thus the

total number of states is at most 2ln. Therefore, the length

of the priority queue Q is at most 2ln, because each state
is inserted into Q at most once. By using Fibonacci heap
[22], the time costs of the push and update operators are

Oð1Þ, and the cost of the pop operator is Oðlog ð2lnÞÞ. As a
result, the time overhead for popping all the elements in

Q is at most Oð2lnðlog ð2lnÞÞÞ, and thus the total time cost

of line 5 is bounded by Oð2lnðlog ð2lnÞÞÞ. Second, for each
node v, there are 2l states. For each state ðv;XÞ, the time

cost taken in lines 8-11 is Oð2l�jXjjNvjÞ, where jNvj
denotes the neighbor size of v. Therefore, for a node v,
the total cost taken in lines 8-11 (the sum of the costs

taken over all the states ðv;XÞ) is OðjNvj
Pl

i¼0 ð
l
i
Þ2l�iÞ ¼

Oð3ljNvjÞ. As a result, the total cost taken in lines 8-11 is

at most OðPv2V 3ljNvjÞ ¼ Oð3lmÞ. Note that all the short-

est-path distances shown in line 10 can be pre-computed
in Oðlðmþ nlognÞÞ time. Putting it all together, the time

complexity of Algorithm 1 is Oð3l �mþ 2l � n�
ðlþ log ðnÞÞÞ. For the space complexity, it is easy to derive

that the space overhead is Oð2lnþmÞ. tu

3.2 A New DP Solution

As shown in the previous section, the time complexity of

Basic is dependent on 3lm which is not very efficient. In
this section, we propose a novel DP algorithm based on two
growing rules, namely, edge growing and node growing,
which is shown to be more efficient than Basic. The idea is
that, for each state ðv;XÞ, by edge growing, we try to
expand it to a new state ðu;XÞ for an edge ðv; uÞ 2 E; and by
node growing, we try to expand it to a new state
ðv;X [ fxgÞ for the node x 2 U �X. Specifically, the state
transition equation is given by

fðu;XÞ ¼ minf min
ðv;uÞ2E

ffðv;XÞ þ a� wðv; uÞg;

min
x2X
ffðu;X � fxgÞ þ ð1� aÞ � distðx; uÞgg:

(6)

We explain the Eq. (6) as follows. Let Psu be the optimal
route starting from s and ending at u, with query node set
X, and fðu;XÞ be the cost of Psu. To obtain fðu;XÞ, we con-
sider the following two cases.

Case-1: edge growing. Assume that all the meeting points
for the query nodes in X and the optimal route Psu are
located in VPsu � fug. In this case, we can get the optimal
route Psu by expanding the optimal sub-route Psv with set
X, for ðv; uÞ 2 E. This is because all the meeting points in
this case are located in the optimal sub-route Psv. The idea
of this case is illustrated in Fig. 5a. It is easy to show that in
this case, fðu;XÞ ¼ minðv;uÞ2Effðv;XÞ þ a� wðv; uÞg.

Case-2: node growing. Suppose that there is at least one
node x 2 X whose meeting point with the optimal route Psu

is u. In this case, the optimal route Psu with set X can be
obtained by expanding the optimal route Psu with set
X � fxg. The idea of this case is illustrated in Fig. 5b. Under
this case, we can derive that fðu;XÞ ¼ minx2Xffðu;X�
fxgÞ þ ð1� aÞ � distðx; uÞg.

Clearly, fðu;XÞ can be obtained by taking the minimum
cost over these two cases (Eq. (6)). Note that the state

transition equation of the new DP algorithm (Eq. (6)) is fun-
damentally different from that of the Basic algorithm
(Eq. (5)). Let us consider a state ðu;XÞ. In Basic, the set X is
split into two parts X1 and X �X1, where X1 is a subset of
X. To get the optimal substructures, two disjoint cases are
considered in Basic: 1) all the meeting nodes for the nodes in
X �X1 and the optimal route P are u, and 2) all the meeting
nodes for the nodes inX1 and the optimal route P are located
in VP � fug. However, in the newDP algorithm, to obtain the
optimal substructures, we consider two newdisjoint cases: 1)
nomeeting node is u, and 2) at least onemeeting node is u.

Algorithm 2. GrowðG;U; s; tÞ
Input: G ¼ ðV;E;WÞ, node set U , a, source node s, and target

node t.
Output: the minimum cost.
1: Q  ;; D  ;;
2: Q:pushððs; ;Þ; 0Þ;
3: while Q 6¼ ; do
4: ððv;XÞ; costÞ  Q:popðÞ;
5: if v ¼ t andX ¼ U then return cost;
6: D  D [ fðv;XÞg;
7: for all ðv; uÞ 2 E do
8: updateðQ;D; ðu;XÞ; costþ a� wðv; uÞÞ;
9: for all x 2 U �X do
10: updateðQ;D; ðv;X [ fxgÞ; costþ ð1� aÞ � distðx; vÞÞ;
11: return þ1;

The Grow algorithm. Based on Eq. (6), we can compute
theOMMPR query by using the best-first dynamic program-
ming.We refer to this DP algorithm asGrow, as it is based on
two growing rules. TheGrow algorithm is described in Algo-
rithm 2. Similar to Basic, theGrow algorithm also repeatedly
deletes the top element ððv;XÞ; costÞ in the priority queue Q
based on the best-first strategy. Unlike Basic, in each expan-
sion, the algorithm individually expands the end-node of the
current route using edge growing (lines 7-8) and the set X
with only one new node x using node growing (lines 9-10),
and then invokes the same update procedure as Basic to
refine the cost of the expanded element. The algorithm termi-
nates until it finds the optimal route (line 5). We show the
correctness of the algorithm in Theorem 3.4.

Theorem 3.4. Algorithm 2 correctly computes the optimal cost
for the OMMPR query.

Proof. The proof can be obtained by the induction on jXj.
We omit the details due to space limit. tu
The following example illustrates how Algorithm 2

works.

Example 3.5. Reconsider the graph shown in Fig. 1. Assume
that s ¼ v1, t ¼ v10, U ¼ fv6g, and a ¼ 1=2. First, the algo-
rithm pushes the element ððs; ;Þ; 0Þ into the priority
queue Q (line 2). Then, in the first iteration, the element

Fig. 5. Illustration of the idea of Eq. (6).
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ððs; ;Þ; 0Þ is popped from the queue (line 4). Subse-
quently, the algorithm expands the state ðs; ;Þ following
two growing rules: 1) (edge growing) expanding an edge
ðs; vÞ for all ðs; vÞ 2 E, and 2) (node growing) expanding
a query node v6. After that, the algorithm generates four
states which are ððv2; ;Þ; 1Þ, ððv3; ;Þ; 1Þ, ððv4; ;Þ; 1=2Þ, and
ððv1; fv6gÞ; 3=2Þ, and pushes these states into Q. Note that
after the first iteration, the priority queue in Algorithm 1
has seven elements, while the priority queue in Algo-
rithm 2 has only four elements. This is because for each

ðv;XÞ, Algorithm 1 generates jNvj2ðl�jXjÞ expanded states,
whereas Algorithm 2 only generates jNvj þ ðl� jXjÞ
states. Clearly, Algorithm 2 is much more efficient than
Algorithm 1. Likewise, in the second iteration, the algo-
rithm pops the element ððv4; ;Þ; 1=2Þ and expands the
state ðv4; ;Þ. When the state ðv10; fv6gÞ is popped, the
algorithm terminates. We can obtain that the optimal
cost for the query is 3, and the optimal route is
ðv1; v3; v7; v10Þ.

Cost analysis. The time and space complexities of Algo-
rithm 2 are analyzed in Theorem 3.6.

Theorem 3.6. Algorithm 2 calculates the OMMPR query using

Oð2l � ðmþ n � ðlþ log ðnÞÞÞÞ time and Oð2lnþmÞ space,
where l is the number of elements in U .

Proof. Similar to the proof of Theorem 3.3, the length of the
priority queue is at most 2ln. Thus, the total cost for pop-

ping all the top elements in Q is Oð2ln log ð2lnÞÞ by using

Fibonacci heap. For each node v, there are 2l states. For
each state ðv;XÞ, lines 7-10 take OðjNvj þ ðl� jXjÞÞ time
cost. Therefore, for each node v, the total cost taken

in lines 7-10 is Oð2ljNvj þ
Pl

i¼0 ð
l
i
Þðl� iÞÞ ¼ Oð2ljNvjþ

l2l�1Þ. Then, for all the nodes, the total time cost is

OðPv2V ð2ljNvj þ l2l�1ÞÞ ¼ Oð2lmþ nl2l�1Þ. Note that all

the shortest-path distances shown in line 10 can be com-
puted in advance in Oðlðmþ n lognÞÞ time. Putting it all
together, the time complexity of Algorithm 2 is

Oð2l � ðmþ n � ðlþ log ðnÞÞÞÞ. In addition, it is easy to
derive that the space complexity of Algorithm 2 is

Oð2lnþmÞ. tu
Remark 2. It is worth to remarking that the proposed DP sol-

utions for the OMMPR query problem (Algorithms 1 and
2) are essentially different from the well-known DP solu-
tion, i.e., the Dreyfus-Wagner Algorithm, for the Steiner
tree problem [23]. First, the Dreyfus-Wagner algorithm
aims at computing the minimum cost Steiner tree, while
our algorithms aims to find the optimal s � t route. There-
fore, to get the optimal Steiner tree, the Dreyfus-Wagner
algorithm has to merge the partial results computed from
two optimal subtrees, whereas our algorithms are clearly
not based on such a subtree-merging idea. Second, from
the parameterized complexity point of view, the time

complexity of Dreyfus-Wagner algorithm is Oð3lgðm;nÞÞ
[23], [24], where l is the number of terminal nodes for the
Steiner tree problem and gðm;nÞ is a function overm and
n. However, for the OMMPR query problem, the time
complexity of our new DP algorithm (Algorithms 2) can

achieve Oð2lgðm;nÞÞ, which is significantly lower than
that of the Dreyfus-Wagner algorithm. On the other hand,
for the Steiner tree problem, improving the exponential

dependence on l from 3l to 2l is a well-known hard prob-
lem [25], [26], [27], [28]. The best known result for the

Steiner tree problem takes Oð2lþdgðm;nÞÞ time complex-
ity, where d is a constant depending on l and n.

4 OPTIMIZATION TECHNIQUES

Although Grow is much more efficient than Basic, it may
still produce a large number of states. To further improve
the efficiency of the Grow algorithm, in this section, we pro-
pose two new optimized algorithms based on the idea of
bidirectional DP and a carefully-designed lower bounding
technique, which are shown to be very efficient in large
graphs in our experiments.

4.1 Bidirectional DP

We note that in Grow, we can expand either from the source
node or the target node to find the optimal route for the
OMMPR query. This inspires us to further reduce the search
space of Grow based on the idea of bidirectional search [29],
[30]. We refer to the Grow process starting from the source
node s as the forward Grow, and refer to the Grow process
starting from the target node t as the backward Grow. The
bidirectional DP algorithm, called Bidirect, works as fol-
lows. It alternatively performs the forward Grow and back-
ward Grow. During the bidirectional state-expansion
process, the algorithm maintains the cost of the best route
that has been computed so far, denoted as best. Initially,
best is set to þ1, and the states ðs; ;Þ and ðt; ;Þ are pushed
into the priority queue for the forward Grow and backward
Grow respectively. Then, the algorithm picks the top state
ðv;XÞ from the priority queue, and adopts the same rules as
Grow to expand the current state. Assume that the optimal
cost for the states ðv;XÞ and ðu; U �XÞ are computed by the
forward Grow and backward Grow respectively. Then,
when the forward Grow scans the edge ðv; uÞ, we can obtain
a candidate route with cost c ¼ fðv;XÞ þ fðu; U �XÞþ
a� wðv; uÞ. If best > c, which means that we have found a
better route than those found before, we can update best to
be c. For the backward Grow, we use a similar procedure.
The bidirectional DP algorithm terminates when one direc-
tion pops a state ðv;XÞ and the optimal cost for the state
ðv; U �XÞ has already been computed in the other direc-
tion. The correctness of the bidirectional DP can be proved
based on the theory of bidirectional search [29], [30]. Fur-
thermore, similar to the bidirectional search algorithms [29],
[30], one can show that the search space of the Bidirect algo-
rithm is significantly smaller than that of the Grow
algorithm, which is also confirmed in our experiments.
The details of the bidirectional DP algorithm are shown in
Algorithm 3.

In Algorithm 3 (Bidirect), for each state ðv;XÞ, we use the
source node of the Grow algorithm as a label to distinguish
the forward Grow and backward Grow. Specifically, if the
state ðv;XÞ is generated by the forward (backward) Grow,
we label it by ðs; v;XÞ (ðt; v;XÞ). The general procedure of
Bidirect is very similar to Grow, thus we omit the details.
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The major differences between Bidirect and Grow are the
termination condition and the update procedure. In Bidirect,
the termination condition is outlined in line 7. Here
ðlabel0; v;X0Þ 2 D denotes that the optimal cost for the state
ðv; U �XÞ has already been computed in another direction,
implying that two Grow procedures meets at the node v.
Moreover, by D:costððlabel0; v;X0ÞÞ þ cost ¼ best, we know
that the current optimal cost cannot be improved. Based on
the theory of bidirectional search [29], [30], we can derive
that the optimal route has been found when these condi-
tions are satisfied. Different from Grow, in the update proce-
dure of Bidirect, it not only needs to update the cost of the
expanded state (lines 20-21), but also needs to update the
best value when the algorithm finds a better route (lines 22-
23). The following example shows how Algorithm 3 works.

Algorithm 3. BidirectðG;U; s; tÞ
Input: G ¼ ðV;E;WÞ, node set U , a, source node s, and target

node t.
Output: the minimum cost.
1: Q  ;; D  ;; best þ1;
2: Q:pushððs; s; ;Þ; 0Þ;Q:pushððt; t; ;Þ; 0Þ;
3: whileQ 6¼ ; do
4: ððlabel; v;XÞ; costÞ  Q:popðÞ;
5: label0  ðlabel ¼ t?s : tÞ;
6: X0  U �X;
7: if ðlabel0; v;X0Þ 2 D and

D:costððlabel0; v;X0ÞÞ þ cost ¼ best then
8: return best;
9: D  D [ fððlabel; v;XÞ; costÞg;
10: for all ðv; uÞ 2 E do
11: cost0  costþ a� wðv; uÞ;
12: updateðQ;D; best; label0; X0; ðlabel; u;XÞ; cost0Þ;
13: for all x 2 U �X do
14: cost0  costþ ð1� aÞ � distðx; vÞ;
15: updateðQ;D; best; label0; X0 � fxg; ðlabel; v;X [ fxgÞ; cost0Þ;
16: return þ1;
17: Procedure updateðQ;D; best; label0; X0; ðlabel; v;XÞ; costÞ
18: if ðlabel; v;XÞ 2 D then return;
19: if ðlabel; v;XÞ =2 Q thenQ:pushððlabel; v;XÞ; costÞ;
20: if cost < Q:costððlabel; v;XÞÞ then
21: Q:updateððlabel; v;XÞ; costÞ;
22: if ðlabel0; v;X0Þ 2 D and D:costððlabel0; v;X0ÞÞ þ cost < best

then
23: best D:costððlabel0; v;X0ÞÞ þ cost;

Example 4.1. Consider the graph shown in Fig. 1. Suppose
that s ¼ v1, t ¼ v10, U ¼ fv6g, and a ¼ 1=2. Initially, Algo-
rithm 3 pushes the elements ððs; s; ;Þ; 0Þ and ððt; t; ;Þ; 0Þ
into the priority queue Q, where the first s (t) in
ððs; s; ;Þ; 0Þ (ððt; t; ;Þ; 0Þ) is the label representing the for-
ward (backward) Grow. Then, in the first iteration, the
algorithm pops the element ððs; s; ;Þ; 0Þ, and runs the for-
ward Grow to expand the state ðs; ;Þ. In this process, four
elements ððs; v2; ;Þ; 1Þ, ððs; v3; ;Þ; 1Þ, ððs; v4; ;Þ; 1=2Þ, and
ððs; v1; fv6gÞ; 3=2Þ are generated and pushed into Q. In
the second iteration, the algorithm pops the element
ððt; t; ;Þ; 0Þ as it hasminimum cost, and runs the backward
Grow to expand the state ðt; ;Þ. After that, the algorithm
creates four new elements which are ððt; v7; ;Þ; 1=2Þ,
ððt; v8; ;Þ; 1Þ, ððt; v9; ;Þ; 1=2Þ, and ððt; t; fv6gÞ; 2Þ. And then,

in the third iteration, the algorithm pops the element
ððs; v4; ;Þ; 1=2Þ, and performs the forwardGrow to expand
the state ðv4; ;Þ. The procedures for other iterations are
very similar, thus we omit the details. Finally we can get
that the optimal cost returned by the algorithm is 3, which
is consistent with the results of the previous examples.

4.2 Bidirectional Bounded DP

To further reduce the search space of our DP algorithms, we
propose a bidirectional bounded DP algorithm, called
Bidirect-Bounded, by integrating the bidirectional DP and a
carefully designed lower bounding technique. Below, we
first present a lower bound of the cost of the OMMPR query,
and then introduce our algorithm.

Lower bound construction. First, we introduce a procedure
to compute some useful quantities that are required to con-
struct the lower bound. Such quantities are computed
before applying the DP algorithm. Specifically, for all
X � U and x; y 2 X, we refer to ðx; y;XÞ as a state, denoting
a route that starts from x, ends at y, and passes through all
nodes in X. Let Cðx; y;XÞ be the optimal cost of the state
ðx; y;XÞ. Then, it is easy to show that Cðx; y;XÞ can be com-
puted using dynamic programming. In particular, for any
X � U and x; v 2 X, the state transition equation of the DP
algorithm is given by

Cðx; y;XÞ ¼ min
v2X�fyg

fCðx; v;X � fygÞ þ distðv; yÞg: (7)

Initially, we have Cðu; u; fugÞ ¼ 0, for all u 2 U . The idea of
Eq. (7) is that the optimal route corresponding to the state
ðx; y;XÞ can be obtained by expanding the node v from the
optimal sub-route ðx; v;X � fygÞ for each v 2 X � fyg.

Based on Eq. (7), we can make use of the best-first DP
algorithm to compute all the Cðx; y;XÞ for all X � U and
x; y 2 X. The detailed description of the DP algorithm is
outlined in Algorithm 4. We analyze the time and space
complexity of Algorithm 4 in Theorem 4.2.

Theorem 4.2. Algorithm 4 computes Cðx; y;XÞ for all X � U

and x; y 2 X in Oð2l � l3 þ ðmþ n � log ðnÞÞ � lÞ time and

Oð2l � l2 þ n � lÞ space, where l ¼ jU j.
Proof. First, we can pre-compute the all pair shortest-path

distances for the nodes in set U , which takes
Oððmþ n � log ðnÞÞlÞ time complexity. Second, there are

Oðl22lÞ states in total, thus the length of the priority

queue is bounded by Oðl22lÞ. Therefore, the total cost for
picking the top element from the priority queue is

Oðl22l � log ðl22lÞÞ by using Fibonacci heap. The total cost

of lines 8-13 is bounded by Oðl32lÞ based on the pre-com-
puted shortest-path distances. Putting it all together, we
get that the time complexity of Algorithm 4 is

Oð2ll3 þ ðmþ n � log ðnÞÞ � lÞ. In addition, we can easily
derive that the space complexity of Algorithm 4 is

Oð2ll2 þ n � lÞ. tu
After computing Cðx; y;XÞ for all X � U and x; y 2 X,

we develop a lower bound for the cost of the OMMPR query
in the following lemma.

Lemma 4.3. Given a query Q ¼ ðs; t; U;aÞ with a > 1=3. Sup-
pose that Cðx; y;XÞ for all X � U and x; y 2 X have been
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pre-computed. Let P 0 ¼ ððv;XÞ; costÞ be a partial result of the
DP algorithm (e.g., Algorithm 2), where ðv;XÞ and cost
denote a state of the DP algorithm and its corresponding cost
respectively. Further, we letX0 ¼ U �X, and

cð ~P Þ ¼ min
x;y2X0

fdistðv; xÞ þ Cðx; y;X0Þ þ distðy; tÞg; (8)

where ~P denotes the optimal v � t route that passes through all
the nodes inX0. Then, for any partial result P 0, the lower bound
of the optimal cost of the route expanded from the state ðv;XÞ to
the final state ðt; UÞ, denoted as costðP 0Þ, can be calculated by

costðP 0Þ ¼ costþ 1�a
2 cð ~P Þ þ 3a�1

2 distðv; tÞ; if X0 6¼ ;
costþ a� distðv; tÞ; otherwise:

�

(9)

Proof. Let Pvt be the optimal route starting from v and end-
ing at t, with query node set X0. To prove the theorem,
we need to prove that costþ a� cðPvtÞ þ ð1� aÞP

u2X0 distðu; PvtÞ 	 costðP 0Þ. Clearly, when X0 ¼ ;, it is
easy to show that the above inequality holds. When
X0 6¼ ;, we have

a� cðPvtÞ þ ð1� aÞ
X

u2X0 distðu; PvtÞ

� 1� a

2
cð ~P Þ � 3a� 1

2
distðv; tÞ

¼ a� ðcðPvtÞ � distðv; tÞÞ
þ 1� a

2
ð2

X
u2X0 distðu; PvtÞ � cð ~P Þ þ distðv; tÞÞ

5
1� a

2
ðcðPvtÞ þ 2

X
u2X0 distðu; PvtÞ � cð ~P ÞÞ

50;

where the first inequality is due to a > ð1� aÞ=2 when
a > 1=3. We explain the last inequality below. Note that
cðPvtÞ þ 2

P
u2X0 distðu; PvtÞ can be deemed as the cost of a

route that starts from v and ends at t, and passes through

all the nodes in X0. By definition, we know that ~P is the
optimal v � t route that passes through all the nodes in

X0, thus we have cðPvtÞ þ 2
P

u2X0 distðu; PvtÞ 	 cð ~P Þ. tu
It is straightforward to show that Lemma 4.3 also holds

in the backward direction. Specifically, in the backward
direction, the DP algorithm starts from the state ðt; ;Þ and
ends at the state ðs; UÞ. For the partial result
P 0 ¼ ððv;XÞ; costÞ, the lower bound in the backward direc-
tion can be computed by

costðP 0Þ ¼ costþ 1�a
2 cð ~P Þ þ 3a�1

2 distðs; vÞ; if X0 6¼ ;
costþ a� distðs; vÞ; otherwise;

�
(10)

where X0 ¼ U �X and cð ~P Þ ¼ minx;y2X0 fdistðs; xÞ þ Cðx; y;X0Þþ
distðy; vÞg.

The Bidirect-Bounded algorithm. Note that the lower
bound shown in Lemma 4.3 is designed for the case a > 1=3.
To devise the Bidirect-Bounded algorithm, we need to con-
sider two different cases: 1) a � 1=3, and 2) a > 1=3. For
a � 1=3, we prove that the optimal solution for the OMMPR
query can be computed based on the following lemma.

Lemma 4.4. Given a query Q ¼ ðs; t; U;aÞ with a � 1=3, the
optimal cost of the OMMPR query is a�minx2U;y2Uðdistðs;
xÞ þ Cðx; y; UÞ þ distðy; tÞÞ.

Proof. For any s � t route Pst and a node u 2 U , let v be the
meeting point for node u and route Pst. Then, the
weighted average cost for Pst and node u, denoted by
fðPst; uÞ, is a� cðPstÞ þ ð1� aÞ � distðu; vÞ. Since a � 1=3,
ð1� aÞ � distðu; vÞ 	 2a� distðu; vÞ. Thus, we can con-
struct an alternative route ðs � v � u � v � tÞ whose cost
is a� cðPstÞ þ 2a� distðu; vÞ, which is no larger than
fðPst; uÞ. Note that this route passes through the query
node u. By this construction, we can easily derive that the
optimal route must be a route that passes through all the
query nodes. As a result, the optimal cost of the OMMPR
query is a�minx2U;y2Uðdistðs; xÞþ Cðx; y; UÞ þ distðy; tÞÞ,
which corresponds to the optimal route starting from s,
ending at t, and passing through all nodes inU . tu

Algorithm 4. All-Set-PathsðG;UÞ
1: Q ;;D ;;
2: for all u 2 U do
3: Q:pushððu; u; fugÞ; 0Þ;
4: while Q 6¼ ; do
5: ððx; y;XÞ; costÞ  Q:popðÞ;
6: Cðx; y;XÞ  cost;
7: D D [ fðx; y;XÞg;
8: for all v 2 U �X do
9: X0  X [ fvg;
10: cost0  costþ distðy; vÞ;
11: if ðx; v;X0Þ 2 D then continue;
12: if ðx; v;X0Þ =2 Q then Q:pushððx; v;X0Þ; cost0Þ;
13: if cost0 < Q:costððx; v;X0Þ then

Q:updateððx; v;X0Þ; cost0Þ;

Based on Lemma 4.4, when a � 1=3, the Bidirect-Bounded
algorithm computes the optimal solution of the OMMPR
query as follows. First, for a given query Q ¼ ðs; t; U;aÞ, the
algorithm computes distðs; xÞ and distðy; tÞ for all x; y 2 U by
using the Dijkstra algorithm. Second, the algorithm com-
putes all Cðx; y; UÞ for every x; y 2 U by using Algorithm 4.
Finally, the algorithm takes the minimum value over all
distðs; xÞ þ Cðx; y; UÞ þ distðy; tÞ for all x; y 2 U .

For the case of a > 1=3, the Bidirect-Bounded algo-
rithm integrates the bidirectional DP algorithm and the
proposed lower bounding technique. Unlike our previ-
ous DP algorithms which use the best-first strategy, the
Bidirect-Bounded algorithm adopts the bidirectional DP
algorithm with an A
-heuristic strategy [30], [31], [32] to
expand the states, and simultaneously uses the lower
bound developed in Lemma 4.3 to prune the unpromis-
ing states. Here the A
-heuristic strategy expands the
states based on the lower bound of the cost of the state.
The key idea of the algorithm is as follows. The
Bidirect-Bounded algorithm adopts the bidirectional DP
with the A
-heuristic strategy to find the optimal route,
and maintains the cost of the best route, denoted as best,
which has been calculated so far. In this procedure, the
algorithm computes the lower bound for each state. If
the lower bound cost of a state ðv;XÞ is larger than best,
then all the states expanded from the state ðv;XÞ can be
pruned. As a result, a large number of unpromising states can
be pruned based on such a lower bound. In the experiments,
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we will show that the Bidirect-Bounded algorithm is much
more efficient than the other proposed DP algorithms. The
Bidirect-Bounded algorithm terminates when one direction of
the DP algorithm (either forward DP or backward DP)
reaches the final state. The detailed implementation of the
Bidirect-Bounded algorithm is depicted inAlgorithm 5.

The Bidirect-Bounded algorithm first invokes Algorithm 4
to compute Cðx; y;XÞ for all X � U and x; y 2 X (line 1). If
a � 1=3, the algorithm computes the optimal solution based
on Lemma 4.4 (lines 2-3). Otherwise, the algorithm finds the
shortest path Pst from s to t, and initializes best to be fðPstÞ
(lines 4-5). Then, the algorithm initializes the priority queue,
and performs the bidirectional DP with anA
-heuristic strat-
egy to find the optimal route (lines 6-20). Note that in Algo-
rithm 5, each state ðv;XÞ is represented by a tuple
ððlabel; v;XÞ; cost; lbÞ, where label is used to distinguish the
forward and backward DP, v denotes a node, andX is a sub-
set of U , cost denotes the cost of the state ðv;XÞ, and lb
denotes the lower bound of the state ðv;XÞ which is calcu-
lated by Eq. (9) (or Eq. (10)). The general procedure of the
algorithm is very similar to that of Bidirect, thus we omit the
details. The main differences between Bidirect-Bounded and
Bidirect are summarized below. First, Bidirect-Bounded uses
the lower bound cost of the state as the priority by the
A
-heuristic strategy, whereas Bidirect uses the cost of the
state as the priority. Thus in line 10, Bidirect-Bounded always
pops the state that has the minimum lower bound cost. Sec-
ond, the termination condition of Bidirect-Bounded (line 13)
is different from that of Bidirect. In Bidirect-Bounded, the
algorithm terminates when one direction of the DP reaches
the final state, whereas in Bidirect, the algorithm terminates
when the forward DP and backward DP meet at a certain
node. Third, in the update procedure, the Bidirect-Bounded
algorithm first computes the lower bound of the expanded
state by invoking lbððlabel; v;XÞ; label0; X0; cost;DÞ (line 24),
and determines whether the state can be pruned or not
(line 25). If the state cannot be pruned, the algorithm needs to
update the cost, the lower bound, as well as the best value
(lines 26-30). In addition, it is worth mentioning that in the
procedure of computing the lower bound, when the optimal
cost denoted by cost0 from the state ðv;XÞ to the final state
has been computed in the reverse direction, the lower bound
of ðv;XÞ is exactly equals to costþ cost0 (line 32).

Example 4.5. Let us consider a graph shown in Fig. 1. Sup-
pose that s ¼ v1, t ¼ v10, U ¼ fv6g, and a ¼ 1=2. First, the
algorithm pre-computes Cðv6; v6; fv6gÞ which equals 0
(line 1). Second, the algorithm finds the shortest path
from v1 to v10 which are ðv1; v4; v5; v9; v10Þ, and initializes
best to be 7=2. Third, the algorithm computes the lower
bounds of the sates ðs; s; ;Þ and ðt; t; ;Þ that are both 11=4.
Then, the algorithm pushes the elements ððs; s; ;Þ;
0; 11=4Þ and ððt; t; ;Þ; 0; 11=4Þ into Q (lines 7-8). In the
first iteration, the algorithm pops the element ððs; s; ;Þ;
0; 11=4Þ, and performs the forward DP to expand
the state ðs; s; ;Þ. Then, four elements ððs; v2; ;Þ; 1; 4Þ,
ððs; v3; ;Þ; 1; 3Þ, ððs; v4; ;Þ; 1=2; 13=4Þ, and ððs; v1; fv6gÞ; 3=2;
7=2Þ are generated. Since the lower bounds of the states
ðs; v2; ;Þ and ðs; v1; fv6gÞ are no less than best, these two
states are pruned (line 25), and elements ððs; v3; ;Þ; 1; 3Þ
and ððs; v4; ;Þ; 1=2; 13=4Þ are pushed into Q. Comparing

to the Bidirect algorithm, here the Bidirect-Bounded algo-
rithm can prune two states, thus it is more efficient than
Bidirect. In the second iteration, the algorithm pops the
element ððt; t; ;Þ; 0; 11=4Þ as it has the smallest lower
bound. The algorithm perform a similar way to expand
the state. For other iterations, the processes are similar.
When the algorithm terminates, we can get that the opti-
mal cost returned by the algorithm is 3, which is consis-
tent with the previous examples.

Algorithm 5. Bidirect-BoundedðG;U; s; tÞ
Input: G ¼ ðV;E;WÞ, node set U , a, source node s, and target

node t.
Output: the minimum cost.
1: All-Set-PathsðG;UÞ;
2: if a � 1

3 then
3: return a�minx2U;y2Uðdistðs; xÞ þ Cðx; y; UÞ þ distðy; tÞÞ;
4: P 0  shortest path from s to t;
5: best a� cðP 0Þ þ ð1� aÞ �P

x2Uðminv2VP 0 distðx; vÞÞ;
6: Q  ;; D  ;;
7: Q:pushððs; s; ;Þ; 0; lbððs; s; ;Þ; t; U; 0;DÞÞ; /* lb is the priority

inQ. */
8: Q:pushððt; t; ;Þ; 0; lbððt; t; ;Þ; s; U; 0;DÞÞ;
9: while Q 6¼ ; do
10: ððlabel; v;XÞ; cost; lbÞ  Q:popðÞ; /* pop the minimum

lb element. */
11: label0  ðlabel ¼ t?s : tÞ;
12: X0  U �X;
13: if v ¼ label0 andX ¼ U then return cost;
14: D  D [ fððlabel; v;XÞ; costÞg;
15: for all ðv; uÞ 2 E do
16: cost0  costþ a� wðv; uÞ;
17: updateðQ;D; best; label0; X0; ðlabel; u;XÞ; cost0Þ;
18: for all x 2 U �X do
19: cost0  costþ ð1� aÞ � distðx; vÞ;
20: updateðQ;D; best; label0;X0 � fxg; ðlabel; v;X [ fxgÞ; cost0Þ;
21: return þ1;
22: Procedure updateðQ;D; best; label0; X0; ðlabel; v;XÞ; costÞ
23: if ðlabel; v;XÞ 2 D then return;
24: lb lbððlabel; v;XÞ; label0; X0; cost;DÞ;
25: if lb >¼ best then return;
26: if ðlabel; v;XÞ =2 Q thenQ:pushððlabel; v;XÞ; cost; lbÞ;
27: if lb < Q:lbððlabel; v;XÞÞ then
28: Q:updateððlabel; v;XÞ; cost; lbÞ; /* update both cost and lb */
29: if ðlabel0; v;X0Þ 2 D and D:costððlabel0; v;X0ÞÞ þ cost < best

then
30: best D:costððlabel0; v;X0ÞÞ þ cost;
31: Procedure lbððlabel; v;XÞ; label0; X0; cost;DÞ
32: if ðlabel0; v;X0Þ 2 D then return costþD:costððlabel0; v;X0ÞÞ;
33: if label ¼ s then
34: ifX0 6¼ ; then
35: c minx2X0 ;y2X0 fdistðv; xÞ þ Cðx; y;X0Þ þ distðy; tÞg;
36: return costþ 1�a

2 � cþ 3�a�1
2 � distðv; tÞ;

37: return costþ a� distðv; tÞ;
38: else
39: ifX0 6¼ ; then
40: c minx2X0 ;y2X0 fdistðs; xÞ þ Cðx; y;X0Þ þ distðy; vÞg;
41: return costþ 1�a

2 � cþ 3�a�1
2 � distðs; vÞ;

42: return costþ a� distðs; vÞ;

Correctness analysis. When a � 1=3, the algorithm is obvi-
ously correct by Lemma 4.4. Below, we analyze the correct-
ness of the Bidirect-Bounded algorithm when a > 1=3.
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Since Bidirect-Bounded terminates when one direction of the
DP reaches the final state, we focus on analyzing the correct-
ness of one direction of the DP. For simplicity, we consider
the forward DP, and similar results can be obtained for the
backward DP. Let PvtðXÞ ¼ ððv;XÞ; costÞ be a partial result
of the forward DP algorithm (forward Grow), and let
X0 ¼ U �X. For the state ðv;XÞ with v 6¼ t and X 6¼ U , the
forward DP algorithm has two different strategies to
expand the state ðv;XÞ: 1) expanding an edge ðv; uÞ, and
2) expanding a query node x 2 X0 (see Algorithm 5). For the
first strategy, we can obtain a state ðu;XÞ, whereas for the
second strategy, we can get a state ðv;X [ fxgÞ. Let
pðPutðXÞÞ ¼ costðPutðXÞÞ � cost. Then, we have the follow-
ing two lemmas.

Lemma 4.6. a� wðv; uÞ þ pðPutðXÞÞ 	 pðPvtðXÞÞ.
Proof. Let X0 ¼ U �X. We consider two cases: 1) X0 ¼ ;,

and 2) X0 6¼ ;. For the first case, we have a� wðv; uÞþ
a� distðu; tÞ 	 a� distðv; tÞ, thus the lemma holds.

For the second case, we let cð ~PvtðXÞÞÞ ¼ minx;y2X0
fdistðv; xÞ þ Cðx; y;X0Þ þ distðy; tÞg, and cð ~PutðXÞÞÞ ¼
minx;y2X0 fdistðu; xÞ þ Cðx; y;X0Þ þ distðy; tÞg. Then, we

have

a� wðv; uÞ þ 1� a

2
cð ~PutðXÞÞ þ 3a� 1

2
distðu; tÞ

¼ 1� a

2
ðcð ~PutðXÞÞ þ wðv; uÞÞ þ 3a� 1

2
ðwðv; uÞ þ distðu; tÞÞ

5
1� a

2
ðcð ~PutðXÞÞ þ wðv; uÞÞ þ 3a� 1

2
distðv; tÞ

5
1� a

2
cð ~PvtðXÞÞ þ 3a� 1

2
distðv; tÞ;

where the last inequality can be derived by the definition
of cð ~PvtðXÞÞ. Putting it all together, the lemma is
established. tu

Lemma 4.7. When X 6¼ U , ð1� aÞ � distðx; vÞ þ pðPvtðX[
fxgÞÞ 	 pðPvtðXÞÞ.

Proof. We consider two different cases: 1) X [ fxg ¼ U , and
2) X [ fxg 6¼ U . For the first case, we have
pðPvtðX [ fxgÞÞ ¼ a� distðv; tÞ by Eq. (9). Then, we have

ð1� aÞ � distðx; vÞ þ a� distðv; tÞ
¼ 1� a

2
ð2� distðx; vÞ þ distðv; tÞÞ þ 3a� 1

2
distðv; tÞ

5
1� a

2
cð ~PvtðXÞÞ þ 3a� 1

2
distðv; tÞ;

where the last inequality can be derived by the definition
of cð ~PvtðXÞÞ. For the second case, we need to prove that

ð1� aÞ � distðx; vÞ

þ 1� a

2
cð ~PvtðX [ fxgÞÞ5 1� a

2
cð ~PvtðXÞÞ:

By the definition of cð ~PvtðXÞÞ, it is easy to show that the
above inequality holds. This completes the proof. tu
Lemma 4.6 and Lemma 4.7 imply that the proposed

lower bounding technique satisfies the so-called consistent
condition defined in the A
 algorithms [30], [31], [33]. Based
on the optimality of the A
-search theory [31], [33], we can

conclude that the Bidirect-Bounded algorithm finds the opti-
mal route for the OMMPR query.

Cost analysis. It is easy to show that the worst-case time and
space complexity of the Bidirect-Bounded algorithm are no
higher than those of Algorithm 2 andAlgorithm 3. In practice,
we will show that the Bidirect-Bounded algorithm is much
more efficient than the other proposed DP algorithms. The
reason is as follows. Based on Lemmas 4.6 and 4.7, we can see
that the lower bound will monotonously increase when the
forward (backward) DP algorithm expands a state (see
lines 16-17, lines 19-20, and line 24). Therefore, in the process
of running Bidirect-Bounded, the lower bound (lb in line 24)
keeps increasing, whereas the best value keeps decreasing,
and thus the pruning power of the algorithm is increasingly
strong. When best is close to optimal, most of unpromising
states will be pruned by the Bidirect-Bounded algorithm. As a
result, the algorithm only needs to generate a small number of
states, and thus it is very efficient.

5 PERFORMANCE STUDIES

We conduct extensive performance studies to evaluate the
proposed algorithms. We implement four algorithms,
namely, Basic (Algorithm 1), Grow (Algorithm 2), Bidirect
(Algorithm 3), and Bidirect-Bounded (Algorithm 5). To the
best of our knowledge, there is no algorithm in the literature
that can answer the OMMPR query exactly. Thus, in our
experiments, we use Basic as the baseline. All algorithms
are implemented in C++, and the graph is stored in memory
by using a adjacency list. We compare the query processing
time and memory consumption for all the algorithms. In all
the tests, for the Bidirect-Bounded algorithm, the time for
computing the costs of all set paths (Algorithm 4) is
included in the reported processing time. For memory con-
sumption, we only report the memory allocated in query
processing without including the memory used to store the
graph. This is because for each dataset, the memory used to
store the graph keeps unchanged for all queries. All experi-
ments are conducted on a computer with 3.4 GHz Intel
Xeon E5-2687W CPU and 32 GB memory running Red Hat
Enterprise Linux 6.4 (64-bit).

Datasets. We use four large real-world datasets NW, W,
CTR, and USA, each of which corresponds to a part of the
road network in the United States (US). Among them, USA
is the road network of the whole US. All datasets are down-
loaded from the DIMACS website (http://www.dis.uni-
roma1.it/challenge9/). The detailed statistics of the datasets
are reported in Table 1.

Parameters and query generation. For each dataset, we vary
five parameters, namely, distðs; tÞ, �dðUÞ, �dðU; s; tÞ, jUj, and
a. Here distðs; tÞ is the shortest-path distance from node s to

TABLE 1
Datasets

Dataset Description jV j jEj
NW Northwest USA 1,207,945 2,840,208
W Western USA 6,262,104 15,248,146
CTR Central USA 14,081,816 34,292,496
USA Full USA 23,947,347 58,333,344
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node t. �dðUÞ is the average shortest-path distance for every
pair of nodes in U . Let Pst be the shortest path from the

source node s to the target node t. �dðU; s; tÞ is average short-
est-path distance from the nodes in U to the shortest path

Pst, i.e., �dðU; s; tÞ ¼P
u2U dðu; VPstÞ=jU j. Given a certain set

of parameters, our query is generated as follows. In the first
step, we randomly select the source node s and target node
t, such that the distance between s and t is dðs; tÞ. In the sec-
ond step, we draw a square on the map. We control the cen-
ter of the square such that the expected distance from any

point in the square to the path from s to t is �dðU; s; tÞ. We
also control the size of the square such that the expected dis-
tance between any two randomly selected points in the

square is �dðU; s; tÞ. In the third step, we randomly select jUj
nodes in the square to be U . We keep doing the three steps
until a valid query that satisfy all constraints is selected.

The range and the default values of the parameters are
shown in Table 2. For �dðUÞ and �dðU; s; tÞ, their values are
represented in terms of the percentage of dðs; tÞ. When vary-
ing a certain parameter, the other parameters are set to their
default values. For each test with a specific set of parame-
ters, we randomly generate 20 queries with the correspond-
ing parameters, and report the average results over all the
20 queries.

Exp-1: Vary distðs; tÞ. In this experiment, we vary
distðs; tÞ from 100 to 500km. The query processing time
for the four datasets is shown in Figs. 6a, 6b, 6c, and 6d
respectively. Generally, when graph size increases, the
query processing time for each algorithm increases. How-
ever, the increment of the query processing time is not pro-

portional to the increment of graph size. The reason is that
the total search space of all the proposed DP algorithms are

confined by the parameters distðs; tÞ, �dðUÞ, and �dðU; s; tÞ
which are fixed for all datasets. On average, Grow is 0:5
times faster than Basic; Bidirect is 6:6 times faster than
Grow; and Bidirect-Bounded is 8 times faster than Bidirect in
all datasets. Not surprisingly, the query processing time for
each algorithm increases with increasing distðs; tÞ, because
the search space for all algorithms enlarge when distðs; tÞ
increases. The results are consistent with the theoretical
analysis shown in Sections 3 and 4. In addition, in
USA dataset, we can see that our best algorithm
(Bidirect-Bounded) takes less than one second to answer the
OMMPR query when distðs; tÞ � 300 km, and even when
distðs; tÞ > 300km our best algorithm is still very efficient,
which takes only a few seconds to answer the OMMPR
query. This result indicate that Bidirect-Bounded can be
used for real-time ridesharing applications.

We also report the memory consumption for each algo-
rithm when varying distðs; tÞ from 100 to 500 km. The
results are shown in Figs. 7a, 7b, 7c, and 7d respectively.
For all algorithms, the curves for memory consumption in
all datasets are similar to those for query processing time
shown in Fig. 6. Bidirect-Bounded performs much better
than all the other algorithms over all datasets. This is
because Bidirect-Bounded prunes a large number of
unpromising states, thus the space overhead for storing
the states is smaller than that of the other algorithms. In
the following, due to space limit, we only report the proc-
essing time for each query. The memory consumptions for
all algorithms are consistent with those shown in Fig. 7.

Exp-2: Vary �dðUÞ. In this experiment, we vary �dðUÞ from
10 to 50 percent of dðs; tÞ (default 300 km), that is, from 30 to
150 km. The query processing time of all the algorithms
over the four datasets are shown in Fig. 8. Similar to Exp-1,
when the graph size increases, the query processing time

for each algorithm increases. When �dðUÞ increases, the
query processing time for each algorithm increases. The rea-

son is that, for a fixed distðs; tÞ, when �dðUÞ is large, the algo-
rithm needs to find the meeting points for nodes in U that

TABLE 2
Parameters

Parameter Range Default

distðs; tÞ ½100; 500� (km) 300 km
�dðUÞ ½10%; 50%� (�distðs; tÞ) 30%

�dðU; s; tÞ ½10%; 50%� (�distðs; tÞ) 30%
jU j ½3; 7� 5
a ½0:2; 0:6� 0:4

Fig. 6. Vary dðs; tÞ (in km): processing time.

Fig. 7. Vary dðs; tÞ (in km): memory consumption.
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are far away from each other, thus the time overhead for
computing the optimal route increases. In addition, in

all datasets, when �dðUÞ increases, the processing time of
Basic, Grow and Bidirect increases faster than that of
Bidirect-Bounded. For example, in the USA dataset, when
�dðUÞ increases from 10 to 50 percent, the processing time of
Basic, Grow, Bidirect, and Bidirect-Bounded increases by
2:2, 2:6, 4:3, and 1:3 times respectively. This is due to the
strong pruning power of Bidirect-Bounded, which is
consistent with the theoretical analysis shown in Section 4.2.
This result also indicates the high scalability of the
Bidirect-Bounded algorithm.

Exp-3: Vary �dðU; s; tÞ. In this experiment, we vary
�dðU; s; tÞ from 10 to 50 percent of dðs; tÞ (default 300 km),
that is, from 30 to 150km. The results are depicted in
Fig. 9. In all datasets, we can see that the query processing
time of each algorithm slightly increases with increasing
�dðU; s; tÞ. For example, in the USA dataset, when �dðU; s; tÞ
increases from 10 to 50 percent, the query processing time
for Basic, Grow, Bidirect, and Bidirect-Bounded increases
by 0:6, 0:6, 0:7, and 0:7 times respectively. This results indi-

cate that for a fixed distðs; tÞ and �dðUÞ, the query process-

ing time for all the algorithms is not sensitive to �dðU; s; tÞ.
Similarly, Bidirect-Bounded performs much better than the
other algorithms.

Exp-4: Vary jUj. In this experiment, we study how jUj
affects the performance of our algorithms. In particular, we
vary jU j from 3 to 7, as jUj is generally very small in ride-
sharing related applications (e.g., jU j � 7 for a typical car).

The results are reported in Fig. 10. As can be seen, when jU j
increases, the query processing time for all the algorithms
increase. The query processing time for Bidirect-Bounded
increases slowly, whereas the query processing time for the
other three algorithms increases much more sharply. For
example, in the USA dataset, when jUj increases from 3 to 7,
the query processing time for Basic, Grow, Bidirect, and
Bidirect-Bounded increases by 46:9, 38:5, 9:8, and 1:6 times
respectively. When jU j ¼ 7, Bidirect-Bounded is an order of
magnitude faster than Bidirect, more than two orders of
magnitude faster than Grow, and three orders of magnitude
faster than Basic. The results show the high scalability of
Bidirect-Boundedwith increasing jU j.

Exp-5: Vary a. In this experiment, we vary a from 0:2 to
0:6, because a is typically not very large in practice. The
results are shown in Fig. 11. We can find that when a

increases, the processing time of the algorithms Basic,
Grow, and Bidirect are relatively stable. For the
Bidirect-Bounded algorithm, when a � 1=3, the processing
time keeps stable. This is because, when a � 1=3,
Bidirect-Bounded can output the result directly after invok-
ing Algorithm 4. However, when a > 1=3, the processing
time of Bidirect-Bounded increases with increasing a. The

reason is as follows. When a > 1
3 and it is close to 1

3, by equ.

(9), the lower bound used in Bidirect-Bounded is close to the
optimal cost, resulting in a good pruning power for
Bidirect-Bounded. Thus, a small a is more preferable for
pruning. Note that even for a large a (e.g., a ¼ 0:6),
Bidirect-Bounded is still much faster than all the other

Fig. 8. Vary �dðUÞ (in percentage of dðs; tÞ).

Fig. 9. Vary �dðU; s; tÞ (in percentage of dðs; tÞ).

Fig. 10. Vary jU j.

782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 3, MARCH 2016



algorithms in all the datasets. These results further confirm
the theoretical analysis shown in the previous sections.

Exp-6: Testing walking distance. In this experiment, we
study how the parameter a affects the ratio of the average
walking distance of the query nodes in U (i.e.,
dðU; VPstÞ=jU j) to the length of the optimal route. Let WR be
the ratio of the average walking distance of the query nodes
to the length of the optimal route. Fig. 12 reports the results
in the USA dataset under the default parameter setting (for
the parameters in Table 2 except a). For the other datasets
and other parameter settings, we have similar observations
and we omit the details due to space limitation. From
Fig. 12, we can see that when a � 1=3, we have WR ¼ 0.
This is because when a � 1=3, the optimal route must pass
through all the query nodes, and the walking distances of
the query nodes are 0. On the other hand, we can see that
when a > 1=3, WR increases with increasing a as desired.
Compared to the route distance, the average walking dis-
tance is very small, which is nearly two orders of magnitude
smaller than the route distance. For example, when a ¼ 0:4,
we have WR ¼ 0:022. In this setting, the route distance is 45
times larger than the average walking distance. These
results justify the motivation of our work. In addition, it
should be noted that in real-world applications, we can
always set an appropriate a value to make WR within a rea-
sonable range. Based on the results shown in Fig. 12, we rec-
ommend to set a 2 ½1=3; 0:4�, because in these cases, WR is
within a reasonable range (WR 2 ½0; 0:022�) for many real-
world applications.

6 CONCLUSION

This work presents a comprehensive study on optimalmulti-
meeting-point route query in road networks motivated by
the real-time ride-sharing application, which aims at finding
the best route starting from s and ending at t such that
the weighted average cost between the cost of the route and
the total cost of the shortest paths from the query nodes to
the route is minimized. We prove that the problem of
answering theOMMPR query is NP-hard. To solve the prob-
lem, we propose two fixed-parameter tractable algorithms,

called Basic and Grow, based on dynamic programming.
The time complexities of Basic andGrow rely on the number
of query nodes, which is typically very small in practice. To
further improve the efficiency of our algorithms, we propose
two novel optimized algorithms based on bidirectional DP
and a carefully-developed lower bounding technique. Exten-
sive experiments over four large real-world road networks
confirm the efficiency of the proposed algorithms.
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